Over-parameterization of deep neural networks (DNNs) has shown high prediction accuracy for many applications. Although effective, the large number of parameters hinders its popularity on resource-limited devices and has an outsize environmental impact. Sparse training (using a fixed number of nonzero weights in each iteration) could significantly mitigate the training costs by reducing the model size. However, existing sparse training methods mainly use either random-based or greedy-based drop-and-grow strategies, resulting in local minimal and low accuracy. In this work, to assist explainable sparse training, we propose important weights Exploitation and coverage Exploration to characterize Dynamic Sparse Training (DST-EE), and provide quantitative analysis of these two metrics. We further design an acquisition function and provide the theoretical guarantees for the proposed method and clarify its convergence property. Experimental results show that sparse models (up to 98\% sparsity) obtained by our proposed method outperform the SOTA sparse training methods on a wide variety of deep learning tasks. On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-50 / CIFAR-100, our method has even higher accuracy than dense models. On ResNet-50 / ImageNet, the proposed method has up to 8.2\% accuracy improvement compared to SOTA sparse training methods.
translated by 谷歌翻译
物联网设备越来越多地通过神经网络模型实施,以启用智能应用程序。从环境环境中收集能源的能源收集(EH)技术是电池可为这些设备供电的有前途的替代方法,因为维护成本较低和能源的广泛可用性。但是,能量收割机提供的功率很低,并且具有不稳定性的固有缺点,因为它随环境环境而变化。本文提出了EVE,EVE是一种自动化机器学习(AUTOML)共同探索框架,以搜索具有共享权重的所需的多模型,以进行能源收集的物联网设备。这些共享模型显着降低了记忆足迹,具有不同级别的模型稀疏性,延迟和准确性,以适应环境变化。进一步开发了有效的实施实施体系结构,以有效地执行设备上的每个模型。提出了一种运行时模型提取算法,该算法在触发特定模型模式时以可忽略的开销检索单个模型。实验结果表明,EVE生成的神经网络模型平均比没有修剪和共享的基线模型快2.5倍倍权重。
translated by 谷歌翻译
随着对深度学习民主化的向往,在资源约束设备上实施基于变压器的自然语言处理(NLP)模型的需求越来越大,以实施低延迟和高准确性。现有的BERT修剪方法要求域专家启发手工制作超参数,以在模型大小,延迟和准确性之间取得平衡。在这项工作中,我们提出了AE-Bert,这是一种具有有效评估的自动和高效的BERT修剪框架,以选择“良好”子网络候选(高精度),鉴于整体修剪比率的约束。我们提出的方法不需要人类专家的经验,并且可以在许多NLP任务上取得更好的准确性能。我们关于一般语言理解评估(胶水)基准的实验结果表明,AE-Bert优于Bert $ _ {\ Mathrm {base}} $的最先进的(SOTA)手工制作的修剪方法。在QNLI和RTE上,我们获得75 \%和42.8%的总体修剪比,同时获得更高的精度。在MRPC上,我们的得分比SOTA高4.6,在相同的整体修剪比为0.5。在STS-B上,与SOTA手工制作的修剪方法相比,我们可以达到40 \%的修剪比,而Spearman相关性的损失非常小。实验结果还表明,在模型压缩之后,单个bert $ _ {\ mathrm {base}} $ coder的推理时间在xilinx alveo u200 fpga板上具有1.83 $ \ times $ speedup,与intel(r)xeon相比)Gold 5218(2.30GHz)CPU,它显示了部署BERT $ _ {\ MATHRM {base}} $模型在计算限制设备上生成的方法生成的子网的合理性。
translated by 谷歌翻译
能量收集(EH)间歇性地运行的IOT设备,与深神经网络(DNN)的进步相结合,为实现可持续智能应用开辟了新的机会。然而,由于有限的资源和间歇电源导致频繁故障的挑战,实现了EH设备上的那些计算和内存密集型智能算法非常困难。为了解决这些挑战,本文提出了一种方法,使得具有用于微小能量收集装置的低能量加速器的超快速深度学习。我们首先提出了一种资源感知结构化DNN训练框架,它采用块循环矩阵与ADMM实现高压缩和模型量化,以利用各种矢量操作加速器的优点。然后提出了一种DNN实现方法,即采用低能量加速器来利用具有较小能耗的最大性能的低能量加速器。最后,我们进一步设计Flex,系统支持在能量收集情况下间歇性计算。来自三种不同DNN模型的实验结果表明RAD,ACE和FLEX可以对能源收集设备进行超快速和正确的推断,该设备可降低高达4.26倍的运行时间,高达7.7倍的能量降低,高精度在最高的状态下艺术。
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译
Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST}) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), which is an innovative idea for realizing lightweight through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module to obtain the optimal bit width automatically under a constrained condition where a threshold for distribution distance between the center and samples is applied in the weight value search space. Third, in order to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network a ability of self-judgment. A switch control machine (SCM) builds a bridge between the student network and teacher network in the same location to help the teacher to reduce wrong guidance and impart vital knowledge to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
translated by 谷歌翻译
Automatic font generation without human experts is a practical and significant problem, especially for some languages that consist of a large number of characters. Existing methods for font generation are often in supervised learning. They require a large number of paired data, which are labor-intensive and expensive to collect. In contrast, common unsupervised image-to-image translation methods are not applicable to font generation, as they often define style as the set of textures and colors. In this work, we propose a robust deformable generative network for unsupervised font generation (abbreviated as DGFont++). We introduce a feature deformation skip connection (FDSC) to learn local patterns and geometric transformations between fonts. The FDSC predicts pairs of displacement maps and employs the predicted maps to apply deformable convolution to the low-level content feature maps. The outputs of FDSC are fed into a mixer to generate final results. Moreover, we introduce contrastive self-supervised learning to learn a robust style representation for fonts by understanding the similarity and dissimilarities of fonts. To distinguish different styles, we train our model with a multi-task discriminator, which ensures that each style can be discriminated independently. In addition to adversarial loss, another two reconstruction losses are adopted to constrain the domain-invariant characteristics between generated images and content images. Taking advantage of FDSC and the adopted loss functions, our model is able to maintain spatial information and generates high-quality character images in an unsupervised manner. Experiments demonstrate that our model is able to generate character images of higher quality than state-of-the-art methods.
translated by 谷歌翻译
Gaze estimation is the fundamental basis for many visual tasks. Yet, the high cost of acquiring gaze datasets with 3D annotations hinders the optimization and application of gaze estimation models. In this work, we propose a novel Head-Eye redirection parametric model based on Neural Radiance Field, which allows dense gaze data generation with view consistency and accurate gaze direction. Moreover, our head-eye redirection parametric model can decouple the face and eyes for separate neural rendering, so it can achieve the purpose of separately controlling the attributes of the face, identity, illumination, and eye gaze direction. Thus diverse 3D-aware gaze datasets could be obtained by manipulating the latent code belonging to different face attributions in an unsupervised manner. Extensive experiments on several benchmarks demonstrate the effectiveness of our method in domain generalization and domain adaptation for gaze estimation tasks.
translated by 谷歌翻译